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Monkeypox obeys the (Benford) law: a dynamic analysis
of daily case counts in the United States of America

Leonardo Campanelli'
ABSTRACT

We analyze, for the first time, the first-digit distribution of the monkeypox daily cases in the
United States of America, from May 17 to September 21, 2022. The overall data follow
Benford’s law, a conclusion substantiated by eight different statistical tests, including the
“Euclidean distance test”, which has been designed to specifically check Benford’s distribu-
tion in data. This result aligns with those of other infectious diseases, such as COVID 19,
whose Benfordness has already been confirmed in the literature. Daily counts of monkey-
pox cases, like any other disease evolve in time. For this reason, we analyzed the temporal
deviation of monkeypox counts from Benford’s law to check for possible anomalies in the
temporal series of cases. The dynamic analysis was performed by means of the Euclidean
distance test. This is because, to our best knowledge, that is the only statistically valid,
Benford-specific test whose underlying estimator has a cumulative distribution function with
known analytical properties, and is applicable to small and large samples. This is the case
in dynamic analyses, where the number of data points usually starts from small values and
then increases in time. No anomalies were detected, which indicates that no (fraudulent)
alterations or errors in data gathering took place.
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1. Introduction

Monkeypox is a viral zoonotic infectious disease caused by a virus in the genus Or-
thopoxvirus. An ongoing outbreak started on May 6, 2022 in London, United Kingdom.
From May 18 onwards, cases were reported worldwide in more than about 100 countries.
This is the first time monkeypox has spread outside Central (Congo Basin Clade) and West
Africa (West African Clade), where the disease is endemic (WHO, 2022).

There is evidence that the spread of infectious diseases conforms to Benford’s law. In-
deed, Sambridge et al. (2010) found that the total numbers of cases of 18 infectious diseases
reported to the World Health Organization (WHO) by 193 countries worldwide in 2007 fol-
low a Benford’s distribution. Recently, Benford’s law has been applied to the study of
COVID-19 data, in particular to daily, weekly, and cumulative case and death counts of var-
ious countries [see, e.g., Sambridge and Jackson (2020), Farhadi (2021), and Campanelli
(2022a).] The general result is that the Benford’s distribution well describes the first-digit
distributions of COVID-19 data for most of the countries and, then, it can be used to flag
“anomalies” in the data of specific countries.
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Benford’s law (Benford, 1938) is an empirical statistical law according to which the
probability Pg(d) of occurrence of the first significant digit d in “particular” data sets is

Ps(d) :10g<1+:l>. (1)

Although it is now known that some distributions satisfy Benford’s law [see, e.g. Morrow
(2014) and references therein] and that particular principles lead to the emergence of the
Benford’s phenomenon in data (Hill, 1995a, 1995b, and 1995c), no general criteria has be
found that fully explain when and why Benford’s law holds for a “generic” set of data.

Although much work is still needed to understand the theoretical basis of the law, the
number of its applications has grown in the last few decades [for theoretical insights and
general applications of Benford’s law see, e.g. Miller (2015)]. Probably, the most famous
applications are to detecting tax (see e.g. Nigrini, 1996), campaign finance (see e.g., Cho
and Gaines, 2007), and election (see e.g. Roukema, 2013) frauds. Other interesting appli-
cations are in image processing (Pérez-Gonzalez et al., 2007), where Benford’s law can be
used to test whether or not the image has been compressed, in natural sciences, where the
law has been shown to hold for geophysical observables such as the depths of earthquakes
(Sambridge et al., 2010), and in cryptology, where it can be used to examine the truthfulness
of undeciphered numerical codes (Wase, 2021, Campanelli, 2022b). 2

The aim of this paper is to assert if the data relative to the monkeypox daily counts in the
United States of America (USA) comply or not with Benford’s law. The motivation behind
this is that, as already noticed, there are already sufficient indications that the number counts
of (confirmed and/or death) cases for other infectious diseases (notably COVID 19) follow
a Benford distribution. Therefore, a departure of monkeypox data from Benford’s law could
signal an anomaly, and eventually a fraud, in the data.

2. Method

It is well known that the compliance of data sets to Benford’s law improves as the
range of the data increases. Daily and cumulative death cases by country are then not
appropriate when checking for the compliance of the monkeypox first-digit distributions to
Benford’s law because there have been only few tens of deaths worldwide since the start of
the outbreak (WHO, 2022). Another possibility would be the use of cumulative confirmed
case counts. The disadvantage of using this type of data is that as cumulative case numbers
begin to flatten (e.g. after a monkeypox “wave” has passed), first digits tend to become all
the same, thus distorting relative digit frequencies. In order to overcome this problem, we
will only analyze the data on daily confirmed cases by country. However, the only country
with daily case numbers which extend on a statistically appreciable range is the USA: Here,
the data cover about three orders of magnitude, while in all the other countries affected

2The number of articles, books, and other resources related to Benford’s law is enormous. Only in 2021 (the
year preceding the writing of the present article), for example, the total number of articles, preprints, proceedings,
research reports, books chapters, bachelor, master and PhD theses directly connected to Benford’s law was (greater
than) 131 (Berger et al., 2009). The interested reader can refer the “Benford online bibliography” (Berger et al.,
2009) for an up-to-date collection of Benford’s-law-related works.
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by monkeypox they extend at most on two (WHO, 2022). Accordingly, we will focus our
analysis on the daily case counts from the USA.

3. Results

In order to check the conformance of monkeypox data to Benford’s law, we will use the
“Euclidean distance test”, which has been recently proposed by the author to specifically
quantify the goodness of fit of a data sample to Benford’s law (Campanelli, 2022c). The
reasons behind this choice are discussed in Section 4.

3.1. Overall analysis

The Euclidean distance test is based on the Euclidean distance estimator dy, first intro-
duced by Cho and Gaines (2007) and then analyzed by Morrow (2014),

9
dy =N Y [P(d) - Ps(d))*, )
d=1

where P(d) is the observed first-digit frequency distribution of a sample of size N. The
(empirical) cumulative distribution function (CDF) of the Euclidean distance statistic found
by the author (Campanelli, 2022c) allow us to evaluate p values as p = 1 — CDF(dy).

Data of the 2022 USA monkeypox outbreak are from the Centers for Disease Control
and Prevention (CDC, 2022) and are updated to September 21, 2022. They are the con-
firmed daily cases reported to the CDC since May 17, 2022, the start of the response to
the current outbreak. They include either the positive laboratory test report date, CDC call
center reporting date, or the case data entry date into CDC’s emergency response common
operating platform.

In Table 1, we show the range of daily cases, [min, max|, the number of days, N, the
Euclidean distance, dy;, and the corresponding p value. In the left panel of Figure 1, instead,
we show the observed first-digit frequency distribution of daily case counts superimposed
to Benford’s law. As it is clear from the table and figure, the data comply with Benford’s
law at a high level of significance.

Table 1. The Euclidean distance dy, in Equation (2) and its corresponding p value for the
first-digit distribution of the monkeypox daily case counts in the USA. Also indicated are
the range of cases, [min, max], and the number of days, N. Counts are from the CDC (2022)
and are updated to September 21, 2022. The last three columns show the reduced y? score,
X4 = x*/V, the number v of degrees of freedom, and the p value, p(x?), of the x? statistic
defined in Equation (4).

Range N dy p Xoq v r(x*)
[1,916] 125 1.0031 0.284 0.5462 76  0.9996
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Figure 1: Left panel. Observed first-digit frequencies of the monkeypox daily case counts
in the USA. The (blue) continuous line represents Benford’s law. Middle panel. p values of
the Euclidean distance statistic d;; as a function of the number of data points » (number of
days). The (blue) dashed line is p = 0.10. Right panel. The Euclidean distance statistic as a
function of n. The (blue) continuous line represents the expected value of d;; for a Benford’s
distribution, while the (blue) dashed lines show the corresponding one-sigma interval.

3.2. Dynamic analysis

Since the daily counts relative to monkeypox, as well as to any other infectious dis-
ease, evolve in time, it is interesting and statistically befitting to quantify the deviation of
the timeline of those counts from Benford’s law. Indeed, a dynamic data analysis of the
chronology of the counts better captures the statistical properties of the spread of a disease.

Such a dynamic analysis can be performed by considering the following x? statistic:

N d*_Ez
XZZ Z ( nGn n)l

n=N’

3)

Here, d;; and o, are the expected value and standard deviation of the Euclidean distance
statistic for the Benford’s distribution (Campanelli, 2022c), while d;; is the value of the
observed Euclidean distance statistic for n data points (the ordinal number of days in our
case).

As already noticed, the compliance to Benford’s law improves as the range of the data
increases. For this reason, we let the sum in Equation (4) to begin from N’, the day starting
from which the data range extends at least on two orders of magnitude (in the case at hand,
N’ = 50). The number v of degrees of freedom for the j? statistic is then v =N — N'.

In the middle and right panels of Figure 1 we show, respectively, the p values and scores
of the Euclidean distance statistic d;; as a function of n. The (blue) continuous line in the
right panel represents the expected value of d; for a Benford’s distribution, while the (blue)
dashed lines show the corresponding one-sigma interval.

As it is clear from the figure, the null hypothesis of conformance to Benford’s law can
never be rejected at a 10% level of significance. Moreover, the values of the observed d;
are relatively close to the ones expected for a Benford’s distribution. This closeness can be
quantified by using Equation (3), which gives x? = 41.51 for 76 degrees of freedom. This
corresponds to a reduced x? score as low as x2, = x°/v = 0.5462 and to a p value as large
as p(x?) = 0.9996. These values for the reduced x> and p values, reported in Table 1 for
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convenience, show that the temporal series of the monkeypox daily case counts in the USA
conforms to the Benford’s distribution to a very high significance level.

4. Discussion

The most common test in use for testing whether a numerical sample satisfies Benford’s
law is the Pearson’s 2 (with 8 degrees of freedom), whose estimator is

9 _ 2
a-vy ORI @

The well-known problem with this statistic is the low power at small N (N < 100) (see, e.g.,
Morrow, 2014).

To overcome this problem, other more powerful test statistics like the Kolmogorov-
Smirnov (Kolmogorov, 1933) and Kuiper (Kuiper, 1960) statistics have been used. How-
ever, these statistics have been constructed for continuous distributions and are generally
conservative when testing discrete distributions (see, e.g., Morrow, 2014). Only recently,
Benford-specific asymptotic test values have been found by Morrow (2014). The Kolmogorov-
Smirnov and Kuiper statistics, Dy, and Vy respectively, are defined as follows. Let D,t and
Dy, be D¥ = maxy[+Z(d)], where Z(d) = S(d) — T(d), S(d) = ¥4 _, P(d'), and T(d) =
Y4 _, Ps(d"). Then,

Dy = (VN + 8y) max[D;, Dy] 5)

and
Vi = (VN +vy) (D}, + Dy). (6)

Here, the correction terms 8y = 0.12+0.11/4/N and vy = 0.155 +0.24/\/N have been
introduced by Stephens (1970) for the case of continuous distributions to produce accurate
test statistics regardless of the sample size. Asymptotic test values for these statistics are
given in Table 2. However, since both the asymptotic and the small-sample form of the CDF
for the case of a Benford’s distribution are still unknown, p values cannot be calculated. A
dynamic analysis of monkeypox cases is then not feasible in this case.

Another statistic used to test Benford’s law is the so-called “max statistic”. It is defined
by
my = \Fijx[P(d) — Pg(d)]. (7)

Introduced by Leemis et al. (2000) to specifically test Benford” law, the statistical properties
of the max estimator were subsequently analyzed by Morrow (2014), who provided asymp-
totic test values (reported in Table 2). As for the above two statistics, the Benford-specific
form of the CDF is unknown.

Test statistics based on the Cramér—von Mises statistic have been introduced in the lit-
erature to test discrete distributions, as the Benford one. Following Lockhart et al. (2007),
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we consider the following forms of the Cramér—von Mises statistic,

Wy =N i Z*(d)(d), ®)
d=1
Uy =N i(Z(d) ~2)*(d), ©)
d=1
2 _ $ Z*(d)i(d)
=N L - @) o

where #(d) = [Pg(d) + Pg(d +1)]/2 with Pg(10) = Pg(1) and Z = ¥'5_, Z(d)t(d). The main
problem of the above statistics, whose asymptotic test values are presented in Table 2, is
that only their asymptotic distributions are known. Therefore, their application to small
data samples, which is our case, cannot be completely trusted. [A minor point is that their
asymptotic distributions are not known in closed form, although a precise method to find
them is known and is based on numerical integration (see, e.g., Lockhart et al., 2007)].

In Table 2, we report the test values for the above test statistics for the first-digit distri-
bution of the monkeypox daily case counts in the USA. The null hypothesis of conformance
to Benford’s law, for the overall monkeypox data, cannot be excluded at 90% confidence
level. This result corroborates our finding that monkeypox data comply with Benford’s law
at a high statistically significance level.

Table 2. Test values for different test statistics for the first-digit distribution of the monkey-
pox daily case counts in the USA. Also indicated is the asymptotic critical values at 90%
confidence level for each statistic and the corresponding reference.

Test  testval.  crit.val. Ref.

X% 9.877  13.362 —

Dy 0.691 1.012 Morrow, 2014
Vi 1.091 1.191 Morrow, 2014
my 0.795 0.851 Morrow, 2014

Wz% 0.162 0.351 Lesperance et al., 2016
Uﬁ, 0.127 0.163 Lesperance et al., 2016
A12v 0.732 1.743 Lesperance et al., 2016

Other goodness-of-fit tests could be used, in principle, to test monkeypox data against
Benford’s law, such as the Goodman’s rule of thumb (Goodman, 2016, Campanelli, 2022d),
simultaneous confidence intervals for multinomial probabilities [see Lesperance et al. (2016)
for a discussion of seven different simultaneous confidence intervals tests], the mean abso-
lute deviation (MAD) criterion (see, e.g. Nigrini, 2012), and the Friedmann test (Giles,
2013), just to cite a few.

However, it is important to stress the fact that, at least to our knowledge, the only
Benford-specific test statistic with known analytical expression for the CDF, valid for ei-
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ther small and large data samples, is the Euclidean distance. This makes the Euclidean
distance test the ideal one for studying Benford’s law in dynamic data, where the number of
data points is variable and usually starts from small values.

5. Conclusions

There is an increasing evidence that the number of counts of both death and confirmed
cases due to infectious diseases conforms to Benford’s law. This is the case, for example, of
COVID 19, where extensive analyses have been performed in the last few years. The aim of
this paper was to analyze the first-digit distribution of the daily case counts for the ongoing
2022 monkeypox outbreak in the USA.

A global analysis of the data was performed by using 8 different statistical tests, in-
cluding the “Euclidean distance test”, which has been proposed by the author elsewhere to
specifically quantify the goodness of fit of a data sample to Benford’s law. Our results show
that the data comply with Benford’s law at a high significance level. This suggests that no
manipulations or errors in data collection occurred.

Daily counts of monkeypox cases, and in general death and confirmed cases counts for
any infectious disease, evolve in time. In order to follow the spread of monkeypox dy-
namically, we analyzed the temporal deviation of monkeypox counts from Benford’s law.
Indeed, a dynamic data analysis of the chronology of the counts could not only flag anoma-
lies but also could frame an anomaly temporally. In the case of monkeypox in the USA,
no anomalies were detected, with the temporal series of daily cases conforming to the Ben-
ford’s distribution to a remarkably high significance level of about 99.96%. The statistical
test we used for the dynamic analysis was the Euclidean distance test. The motivation was
that, as far as we know, this is the only Benford-specific test with known analytical expres-
sion for the cumulative distribution function of the underlying estimator which is valid for
either small and large data samples. This last property is strongly required when testing
Benford’s law in dynamic data, since the number of data points usually starts from small
values and than grows in time.

A similar analysis to the one presented in this paper could be applied to both monkeypox
counts from other countries when sufficient data become available and/or to future infec-
tious diseases to flag anomalies and fraudulent manipulations either globally or temporally.
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